Online-LeserInnen 2
In meinem letzten Beitrag habe ich etwas globalisierend über die Dummheit von Online_postern formuliert. Obwohl ich annahm, dass meine LeserInnen doch con grano salis verstehen können, gab es Missverständnisse.
Wenn immer ich missverstanden werde, denke ich darüber nach, wo ich mich falsch ausgedrückt habe. Natürlich hätte ich hinzufügen müssen, dass es sich meistens um die gleichen betroffenen Themenbereiche handelt, hauptsächlich Lokalpolitik, Eisenbahn, Web und noch ein paar andere.
Interessanterweise gibt es auch Themenbereiche, wo die LeserInnen besser beschlagen zu sein scheinen, als die VerfasserInnen der Artikel. In den meisten Fällen handelt es sich dabei um die Aufarbeitungen von PR-Meldungen im Wissenschaftsbereich. Wenn die Themen kompliziert sind, können die Artikel dann schon etwas in Banale oder Unglaubliche abgleiten. So ist mir das zuletzt bei einem Artikel über Quanten-Computer vorgekommen.
http://derstandard.at/1363711521863/Quanten-Computer-vor-Durchbruch-zu-ultraschnellen-Rechnern?seite=2#forumstart
Bei dem Artikel überfällt mich unheimliche Skepsis, weil ich Phrasen erkennen kann, mit denen schon seit Jahrzehnten gearbeitet wird, ohne dass sie an Deutlichkeit gewinnen.
In den Kommentaren finden sich dann aber sehr interessante Vermerke und auch Links. Auf diese Weise bin ich auf die Blogseite eines Quanten-Skeptikers gestossen.
http://www.scottaaronson.com/blog/
Jetzt wird es immer wieder Personen mit Pro- und Contra-Meinungen geben. Scott Aaronson verfolgt die Materie allerdings schon geraume Zeit und scheint ein ziemlich guter Systemiker zu sein.
Jetzt habe ich auf seinem Blog einen Eintrag gefunden, der mich bei aller Ernsthaftigkeit mit großer Heiterkeit erfüllt.
http://www.scottaaronson.com/blog/?p=304
Ich zitiere hier einen Ausschnitt, um all zu vieles Hüpfen entbehrlich zu machen.
...
Inspired by Sean Carroll’s closely-related Alternative-Science Respectability Checklist, without further ado I now offer the Ten Signs a Claimed Mathematical Breakthrough is Wrong.
1. The authors don’t use TeX. This simple test (suggested by Dave Bacon) already catches at least 60% of wrong mathematical breakthroughs. David Deutsch and Lov Grover are among the only known false positives.
2. The authors don’t understand the question. Maybe they mistake NP≠coNP for some claim about psychology or metaphysics. Or maybe they solve the Grover problem in O(1) queries, under some notion of quantum computing lifted from a magazine article. I’ve seen both.
3. The approach seems to yield something much stronger and maybe even false (but the authors never discuss that). They’ve proved 3SAT takes exponential time; their argument would go through just as well for 2SAT.
4. The approach conflicts with a known impossibility result (which the authors never mention). The four months I spent proving the collision lower bound actually saved me some time once or twice, when I was able to reject papers violating the bound without reading them.
5. The authors themselves switch to weasel words by the end. The abstract says “we show the problem is in P,” but the conclusion contains phrases like “seems to work” and “in all cases we have tried.” Personally, I happen to be a big fan of heuristic algorithms, honestly advertised and experimentally analyzed. But when a “proof” has turned into a “plausibility argument” by page 47 — release the hounds!
6. The paper jumps into technicalities without presenting a new idea. If a famous problem could be solved only by manipulating formulas and applying standard reductions, then it’s overwhelmingly likely someone would’ve solved it already. The exceptions to this rule are interesting precisely because they’re rare (and even with the exceptions, a new idea is usually needed to find the right manipulations in the first place).
7. The paper doesn’t build on (or in some cases even refer to) any previous work. Math is cumulative. Even Wiles and Perelman had to stand on the lemma-encrusted shoulders of giants.
8. The paper wastes lots of space on standard material. If you’d really proved P≠NP, then you wouldn’t start your paper by laboriously defining 3SAT, in a manner suggesting your readers might not have heard of it.
9. The paper waxes poetic about “practical consequences,” “deep philosophical implications,” etc. Note that most papers make exactly the opposite mistake: they never get around to explaining why anyone should read them. But when it comes to something like P≠NP, to “motivate” your result is to insult your readers’ intelligence.
10. The techniques just seem too wimpy for the problem at hand. Of all ten tests, this is the slipperiest and hardest to apply — but also the decisive one in many cases. As an analogy, suppose your friend in Boston blindfolded you, drove you around for twenty minutes, then took the blindfold off and claimed you were now in Beijing. Yes, you do see Chinese signs and pagoda roofs, and no, you can’t immediately disprove him — but based on your knowledge of both cars and geography, isn’t it more likely you’re just in Chinatown? I know it’s trite, but this is exactly how I feel when I see (for example) a paper that uses category theory to prove NL≠NP. We start in Boston, we end up in Beijing, and at no point is anything resembling an ocean ever crossed.
Obviously, there are just some heuristics I’ve found successful in the past. (The nice thing about math is that sooner or later the truth comes out, and then you know for sure whether your heuristics succeeded.) If a paper fails one or more tests (particularly tests 6-10), that doesn’t necessarily mean it’s wrong; conversely, if it passes all ten that still doesn’t mean it’s right. At some point, there might be nothing left to do except to roll up your sleeves, brew some coffee, and tell your graduate student to read the paper and report back to you.
This entry was posted on Saturday, January 5th, 2008 at 12:17 am [Scott Aaronson]
"
Ich mag diesen heuristischen Ansatz, auch wenn ich über #1 lachen muss. "Nicht in TeX (gesprochen Tech) geschrieben" hat schon etwas Willkürliches an sich. Ausnahmen werden genannt, und es gibt noch mehr, -- aber das Argument is vorstellbar.
Und insgeheim freue ich mich, weil ich meinen letzten Konferenzbeitrag in TeX schreiben musste, damit er in den Proceedings der Konferenz abgedruckt werden kann :)
Wenn immer ich missverstanden werde, denke ich darüber nach, wo ich mich falsch ausgedrückt habe. Natürlich hätte ich hinzufügen müssen, dass es sich meistens um die gleichen betroffenen Themenbereiche handelt, hauptsächlich Lokalpolitik, Eisenbahn, Web und noch ein paar andere.
Interessanterweise gibt es auch Themenbereiche, wo die LeserInnen besser beschlagen zu sein scheinen, als die VerfasserInnen der Artikel. In den meisten Fällen handelt es sich dabei um die Aufarbeitungen von PR-Meldungen im Wissenschaftsbereich. Wenn die Themen kompliziert sind, können die Artikel dann schon etwas in Banale oder Unglaubliche abgleiten. So ist mir das zuletzt bei einem Artikel über Quanten-Computer vorgekommen.
http://derstandard.at/1363711521863/Quanten-Computer-vor-Durchbruch-zu-ultraschnellen-Rechnern?seite=2#forumstart
Bei dem Artikel überfällt mich unheimliche Skepsis, weil ich Phrasen erkennen kann, mit denen schon seit Jahrzehnten gearbeitet wird, ohne dass sie an Deutlichkeit gewinnen.
In den Kommentaren finden sich dann aber sehr interessante Vermerke und auch Links. Auf diese Weise bin ich auf die Blogseite eines Quanten-Skeptikers gestossen.
http://www.scottaaronson.com/blog/
Jetzt wird es immer wieder Personen mit Pro- und Contra-Meinungen geben. Scott Aaronson verfolgt die Materie allerdings schon geraume Zeit und scheint ein ziemlich guter Systemiker zu sein.
Jetzt habe ich auf seinem Blog einen Eintrag gefunden, der mich bei aller Ernsthaftigkeit mit großer Heiterkeit erfüllt.
http://www.scottaaronson.com/blog/?p=304
Ich zitiere hier einen Ausschnitt, um all zu vieles Hüpfen entbehrlich zu machen.
...
Inspired by Sean Carroll’s closely-related Alternative-Science Respectability Checklist, without further ado I now offer the Ten Signs a Claimed Mathematical Breakthrough is Wrong.
1. The authors don’t use TeX. This simple test (suggested by Dave Bacon) already catches at least 60% of wrong mathematical breakthroughs. David Deutsch and Lov Grover are among the only known false positives.
2. The authors don’t understand the question. Maybe they mistake NP≠coNP for some claim about psychology or metaphysics. Or maybe they solve the Grover problem in O(1) queries, under some notion of quantum computing lifted from a magazine article. I’ve seen both.
3. The approach seems to yield something much stronger and maybe even false (but the authors never discuss that). They’ve proved 3SAT takes exponential time; their argument would go through just as well for 2SAT.
4. The approach conflicts with a known impossibility result (which the authors never mention). The four months I spent proving the collision lower bound actually saved me some time once or twice, when I was able to reject papers violating the bound without reading them.
5. The authors themselves switch to weasel words by the end. The abstract says “we show the problem is in P,” but the conclusion contains phrases like “seems to work” and “in all cases we have tried.” Personally, I happen to be a big fan of heuristic algorithms, honestly advertised and experimentally analyzed. But when a “proof” has turned into a “plausibility argument” by page 47 — release the hounds!
6. The paper jumps into technicalities without presenting a new idea. If a famous problem could be solved only by manipulating formulas and applying standard reductions, then it’s overwhelmingly likely someone would’ve solved it already. The exceptions to this rule are interesting precisely because they’re rare (and even with the exceptions, a new idea is usually needed to find the right manipulations in the first place).
7. The paper doesn’t build on (or in some cases even refer to) any previous work. Math is cumulative. Even Wiles and Perelman had to stand on the lemma-encrusted shoulders of giants.
8. The paper wastes lots of space on standard material. If you’d really proved P≠NP, then you wouldn’t start your paper by laboriously defining 3SAT, in a manner suggesting your readers might not have heard of it.
9. The paper waxes poetic about “practical consequences,” “deep philosophical implications,” etc. Note that most papers make exactly the opposite mistake: they never get around to explaining why anyone should read them. But when it comes to something like P≠NP, to “motivate” your result is to insult your readers’ intelligence.
10. The techniques just seem too wimpy for the problem at hand. Of all ten tests, this is the slipperiest and hardest to apply — but also the decisive one in many cases. As an analogy, suppose your friend in Boston blindfolded you, drove you around for twenty minutes, then took the blindfold off and claimed you were now in Beijing. Yes, you do see Chinese signs and pagoda roofs, and no, you can’t immediately disprove him — but based on your knowledge of both cars and geography, isn’t it more likely you’re just in Chinatown? I know it’s trite, but this is exactly how I feel when I see (for example) a paper that uses category theory to prove NL≠NP. We start in Boston, we end up in Beijing, and at no point is anything resembling an ocean ever crossed.
Obviously, there are just some heuristics I’ve found successful in the past. (The nice thing about math is that sooner or later the truth comes out, and then you know for sure whether your heuristics succeeded.) If a paper fails one or more tests (particularly tests 6-10), that doesn’t necessarily mean it’s wrong; conversely, if it passes all ten that still doesn’t mean it’s right. At some point, there might be nothing left to do except to roll up your sleeves, brew some coffee, and tell your graduate student to read the paper and report back to you.
This entry was posted on Saturday, January 5th, 2008 at 12:17 am [Scott Aaronson]
"
Ich mag diesen heuristischen Ansatz, auch wenn ich über #1 lachen muss. "Nicht in TeX (gesprochen Tech) geschrieben" hat schon etwas Willkürliches an sich. Ausnahmen werden genannt, und es gibt noch mehr, -- aber das Argument is vorstellbar.
Und insgeheim freue ich mich, weil ich meinen letzten Konferenzbeitrag in TeX schreiben musste, damit er in den Proceedings der Konferenz abgedruckt werden kann :)
steppenhund - 19. Mai, 15:03
read 1006 times